
Unit 1 Introduction to C++

1
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Difference between C and C++:

C C++

C is a procedure/function-oriented
language

C++ language is driven by a procedure
or object.

Data is not protected in C. In C++ data is secured.

C uses a top down approach while.
C++ uses a bottom up approach. The
program is prepared step by step in C, and
in C++ base elements are prepared first

In C, we cannot give the samename to
two functions in a program,

In C++ it is possible because of the
function overloading feature.

C uses printf() and scanf() functions to
write and read the data respectively.

C++ uses cout and cin objects for
output and input operations,
respectively. Further, the cout uses <<
(insertion operator) and cin uses >> (
extraction operator).

C uses stdio.h file for input and output
functions

C++ uses iostream.h for these
functions.

Constructor and destructors are absent in
C

Constructor and destructors are there in
C++.

No inline function in C. Inline functions are supported by C++.

Evolution of C++:

C++ is an object oriented programming language and also considered as an extension of
C. Bjarne Stroustrup at AT&T Bell Laboratories in Murray Hill, New Jersey (USA) developed
this language in the early 1980s.

Stroustrup, a master of Simula67 and C, wanted to combine the features of both the
languages and he developed a powerful language that supports object-oriented programming
with features of C. The outcome was C++. Various features were derived
from SIMULA67and ALGOL68. Stroustrup called the new language ‘C with classes’.
However, in 1983, the name was changed to C++.

Unit 1 Introduction to C++

2
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

The ANSI Standard:

The ANSI stands for American National Standards Institute. This Institute was founded
in 1918. The main goal for establishing this Institute was to suggest, reform, recommend, and
publish standards for data processing in the USA. This committee sets up the standard in the
computer industry.

The recognized council working under the procedure of the American National Standards
Institute (ANSI) has made an international standard for C++. The C++ standard is also referred
to as ISO (International Standards Organization) standard. The process of standardization is
gradual and the first draft of the planned ANSI standard was made on 25 January 1994.

Programming Paradigms:

Monolithic Programming:

1. In these types of programming languages, the program is written with a single
function. A program is not divided into parts; hence it is named as monolithic
programming. It is also called single thread execution.

2. When the program size increases it leads to difficulty.
3. In monolithic programming languages such as basic and assembly language, the

data variables declared are global.
4. The program contains jump statements such as goto that transfers control to any

statement as specified in it. Figure shows a program of monolithic type.

5. The concept of sub-programs does not exist, and hence is useful for small

programs.

Unit 1 Introduction to C++

3
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Procedural/Structured Programming – Modular Programming:

1. Programs written are more efficient and easier to understand and modify.
2. It makes use of a top-down design model in which a program developer maps

out the overall program structure into separate subsections.
3. Large size programs can be developed in structured programming such as Pascal

and C. Programs are divided in multiple sub-modules.
4. Procedural/Structured programming languages such as FORTRAN, BASIC,

ALGOL, COBOL, C, etc., are divided into a number of segments called as
subprograms. There is a main function and it invokes subprograms. Thus, it
focuses on functions apart from data. Figure 1.6 describes a program of
procedural/structured type. It shows different sub-programs accessing the same
global data. Here also the programmer can observe the lack of secrecy.

5. The control of program can be transferred using unsafe goto statement.
6. This type of programming language uses different control structures that are as

follows.
a) Decision/selection control statements
b) Iteration control statements
c) Jump control statements

7. Data is global and all the sub-programs share the same data, i.e. data is globally
accessible to all functions.

8. Procedural structured/programming languages permit data transfer through
messages by means of functions.

9. Least importance is given to the data in procedural/structured programming
languages.

Unit 1 Introduction to C++

4
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Object Oriented Programming:
The prime factor in the design of object oriented programming approach is to rectify some

of the faults observed in the procedure oriented languages. Following are the impressive
characteristics of object-oriented programming:

1. OOP pays more importance to data rather than function.
2. Programs are divided into classes and their member functions.
3. OOP follows a bottom-up approach.
4. New data items and functions can be comfortably added whenever essential.
5. Data is private and prevented from accessing external functions.
6. Objects communicate with each other through functions.

Key Concepts of Object Oriented Programming:

There are several fundamental concepts in object oriented programming.

Unit 1 Introduction to C++

5
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Objects:

 Objects are primary run time entities in OOP.
 In real life, a car is an object.
 A car has properties like weight and colour, and methods like start and stop

Object Properties Methods

car.name = Verna
car.model= 2014
car.weight= 1250kg
car.color = white

car.start()
car.drive()
car.brake()
car.stop()

Class:

 A class is an extended concept similar to structures in C – contains only data items.
 But class describes both properties (data) and behaviors(functions) of objects i.e. class

consists of data members and functions.
 Class is not an object but is an instantiate of an object.
 Class is a blue print for an object and defines the functionality to object.

Ex:

class car
{
 char name;
 char color
 int model;
 float weight;
public:
 void start();
 void drive();
 void brake();
 void stop();
};

struct car
{
char name;
char color
int model;
float weight;
};

Method/Member function:

 A member function of a class is a function that has its definition or its prototype resides
within the class.

 It access all the members of the class.

Unit 1 Introduction to C++

6
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

class Box {
 double length;
 double breadth;
 double height;
 double getVolume();
 };

class Box {
 double length;
 double breadth;
 double height;
 double getVolume()
 {
 return length*breadth*height;
 }
 };

Data Abstraction:

Refers to the procedure of representing essential features without including the
background details. Data abstraction is used to define a data type available in the programming
language, called as abstract data type (ADT). It consists of a set of values and a set of
operations.

Encapsulation: The packing of data and functions into a single component is known as
encapsulation.

Inheritance – Inheritance is the method by which objects of one class get the properties of
objects of another class

Polymorphism – Allows the same function with different arguments, which will perform
differently.

Dynamic Binding - Dynamic binding is also known as late binding. The code present in the
specified program is unknown till it is executed.

Message Passing – An object oriented programming includes objects. The objects
communicate with one another by passing messages.

Reusability – OOP allows reusability of the classes by extending them to other classes using
Inheritance.

Genericity – allows declaration of variables without specifying exact data type.

Unit 1 Introduction to C++

7
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Delegation – When an object of one class is used as data member of another class, such
composition is called as delegation.

Advantages of OOP:

Object oriented technology provides many advantages to the programmer and the user.

1. Using inheritance, we can eliminate redundant program code and continue the use of

previously defined classes.

2. The technology of data hiding facilitates the programmer to design and develop safe
programs that do not disturb code in other parts of the program.

3. The encapsulation feature provided by OOP languages allows programmer to define
the class with many functions and characteristics and only few functions are exposed
to the user.

4. Object oriented programming changes the way of thinking of a programmer. This
results in rapid development of new software in a short time.

5. Objects communicate with each other and pass messages.

Usage of OOP:

The most popular application of object oriented programming is windows. There are several
windowing software based on OOP technology. Following are the areas for which OOP is
considered.

1. Simulation
2. Object oriented DBMS
3. Office automation software
4. Artificial Intelligence and expert systems
5. CAD/CAM software
6. Network programming & Internet applications
7. System software

Unit 1 Control Structures

1
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Control Structures:

There are three types of control structures:
1. Sequence
2. Selection also called as decision making statements
3. Iteration

Decision making statements: C++ language supports the decision making-statements as listed

below.

 The if statement
 The if-else statement
 The nested if-else statements.
 The else-if ladder
 The switch case statement.
 The break statement
 The default keyword

The decision-making statement checks the given condition and then executes its sub-

block. The decision statement decides the statement to be executed after the success or failure of

a given condition.

The if Statement: C++ uses the keyword if to execute a set of command lines or a command

line when the logical condition is true. It has only one option. The syntax for the simplest if

statement is as shown in figure.

 Syntax for the simplest if statement:

if (expression) /* no semi-colon */
 Statement;

Syntax for the simplest if statement:

if (expression) /* no semi-colon */
{
 Statement 1;
 Statement 2;

}

Unit 1 Control Structures

2
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

/* Write a program to declare the price of the book with if statement and check its price.
If its price is less than or equal to 600, print the output with some comment, else
terminate.*/

#include<iostream>
using namespace std;
int main()
{

int price;
cout<<“\nEnter the price of the book:”;
cin>>price;
if(price<=600)
{
 cout<<“\n Hurry up buy the book!!!!!”;
}
return 0;

}
Output:

Enter the price of the book: 345
Hurry up buy the book!!!!!

Multiple Ifs: The syntax of multiple ifs is shown in figure. Programs on multiple ifs are as
follows.

Syntax for the multiple ifs:

if (expression) /* no semi-colon */

Statement 1;
if (expression) /* no semi-colon */

Statement 2;
if (expression) /* no semi-colon */

Statement 3;

/* Write a program to enter the percentage of marks obtained by a student and display the
class obtained.*/

#include<iostream>
using namespace std;
int main()
{

float per;
cout<<“\nEnter the percentage:”;
cin>>per;
if(per>=90 && per<=100)
 cout<<“\nDistinction”;

Unit 1 Control Structures

3
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

if(per>=70 && per<90)
 cout<<“\nFirst class”;
if(per>=50 && per<70)
 cout<<“\nSecond class”;
if(per>=40 && per<50)
 cout<<“\nPass”;
if(per<40)
cout<<“\nFail”;
return 0;

}

Output:

Enter the percentage: 95
Distinction.

The if-else Statement: In the if–else statement, if the expression/condition is true, the body of

the if statement is executed; otherwise, the body of the else statement is executed.

Syntax:

if(expression)
 execute the statement1;
else

 execute the statement2;

Unit 1 Control Structures

4
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

/*Write a program to enter age and display a message whether the user is eligible for
voting or not. Use if-else statement.*/

#include<iostream>
using namespace std;
int main()
{

int age;
cout<<“Enter Your Age:”;
cin>>age;
if (age>=18)
{
 cout<<“You are eligible for voting.”;
}
else
{
 cout<<“You are not eligible for voting”<<endl;
 cout<< “Wait for”<<18-age<<“year(s).”;
}
return 0;

}
Output:

Enter Your Age: 17
You are not eligible for voting
Wait for 1 year(s).

Nested if-else Statements: In this kind of statement, a number of logical conditions are tested

for taking decisions. Here, the if keyword followed by an expression is evaluated. If it is true,

the compiler executes the block following the if condition; otherwise, it skips this block and

executes the else block. It uses the if statement nested inside an if-else statement, which is

nested inside another if-else statement. This kind of nesting can be limitless.

if (expression1)
{
 if(expression2)
 statement1;
 else
 statement2;
}
else
{
 if(expression3)
 statement3;
 else

Unit 1 Control Structures

5
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 statement4;
}
Next statement;

/* Program to print the largest of three numbers. */

#include<iostream>
using namespace std;
int main()
{

int a,b,c;
cout<<“\nEnter three numbers:”;
cin>>a>>b>>c;
if(a>b)
{
 if(a>c)
 cout<<“\n a is largest ”;
 else
 cout<<“\n c is largest ”;
}
else
{
 if(b>c)
 cout<<“\n b is largest ”;
 else
 cout<<“\n c is largest ”;
}
return 0;

}
Output:

Enter three numbers: 3 6 89
c is largest.

The else-if Ladder: A common programming construct is the else-if ladder, sometimes called

the if-else-if staircase because of its appearance. In the program one can write a ladder of else-

if. The program goes down the ladder of else-if, in anticipation of one of the expressions being

true.

Unit 1 Control Structures

6
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

/*Syntax of else-if statement can be given as follows.*/
if(condition)
{

statement 1; /* if block*/
statement 2;

}
else if(condition)
{

statement 3; /* else if block*/
statement 4;

}
else
{

statement 5; /* last else block */
statement 6;

}
/*Write a program to calculate energy bill. Read the starting and ending meter reading.
The charges are as follows.

#include<iostream>
using namespace std;
int main()
{

int previous,current,consumed;
float total;
clrscr();
cout<<“\nInitial & Final Readings:”;
cin>>previous>>current;
consumed = current-previous;
if(consumed>=200 && consumed<=500)
total=consumed *3.50;
else if(consumed>=100 && consumed<=199)
total=consumed *2.50;
else if(consumed<100)
total=consumed*1.50;
cout<<“\n Total no of units consumed: ”<<consumed;
cout<<“\n Electric Bill for units ”<< consumed<< “is” <<total;
return 0;

}

No. of units Consumed Rates in (Rs.)
200 - 500 3.5
100 - 200 2.50
Less than 100 1.50 */

Unit 1 Control Structures

7
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Output:
Initial & final readings: 100 235
Total no of units consumed: 135
Electric bill for units 135 is 337.5

Unconditional Control Transfer Statements

The goto statement: This statement does not require any condition. This statement passes
control anywhere in the program without considering any condition. The general format for this
statement is shown in figure.

Here, a label is any valid label either before or after goto. The ‘label’ must start with any
character and can be constructed with rules used for forming identifiers. Avoid using the goto
statement.

 Syntax:

goto label;

label:

/*Write a program to demonstrate the use of goto statement.*/

##include<iostream>
using namespace std;
void main()
{

int x;

cout<<“Enter a Number:”;
cin>>x;
if (x%2==0)

goto even;
else

goto odd;
even:

 cout<<x<<“ is an Even Number.”;
return;

odd:
 cout<<x<<“ is an Odd Number.”;

}

Unit 1 Control Structures

8
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

The break Statement: The break statement allows the programmer to terminate the loop. The
break skips from the loop or the block in which it is defined.

5.7.3 The continue Statement

The continue statement works somewhat like the break statement. Instead of forcing the control
to the end of the loop (as it is in case of break), the continue case causes the control to pass on
to the beginning of the block/loop. In the case of for loop, the continue case initiates the testing
condition and increment on steps has to be executed (while rest of the statement following the
continue are neglected). For while and do-while, the continue case causes control to pass on to
conditional tests. It is useful in a programming situation where it is required that particular
iterations occur only up to some extent or when some part of the code has to be neglected. The
programs on continue are explained in the control loop chapter.

5.8 THE switch STATEMENT

The switch statement is a multi-way branch statement and an alternative to if-else-if ladder in
many situations. The expression of switch contains only one argument, which is then checked
with a number of switch cases. The switch statement evaluates the expression and then looks for
its value among the case constants. If the value is matched with a particular case constant, then
those case statements are executed until a break statement is found or until the end of switch
block is reached. If not, then simply the default (if present) is executed (if a default is not
present, then the control flows out of the switch block). The default is normally present at the
bottom of the switch case structure. But we can also define default statement anywhere in the
switch structure. The default block must not be empty. Every case statement terminates with a
‘:’ (colon). The break statement is used to stop the execution of succeeding cases and pass the
control to the end of the switch block.

switch(variable or expression)

{

case constant A:

statement;

break;

case constant B:

statement;

break;

Unit 1 Control Structures

9
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

default:

statement;

}

Unit 1 Functions

1
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Function: In C++, a function is a group of statements that is given a name, and which can be

called from some point of the program.

The most common syntax to define a function is:

return_type function_name (parameter1, parameter2, ...)

 {

statements

}

Where:

- return_type is the type of the value returned by the function.

- function_name is the identifier by which the function can be called.

- parameters (as many as needed): Each parameter consists of a type followed by an

 identifier, with each parameter being separated from the next by a comma

- statements is the function's body. It is a block of statements surrounded by braces { } that

 specify what the function actually does.

Advantages:

 Reusability: A function once written can be invoked again and again, thus helping us to

reuse the code and removing data redundancy.

 Modularity: Functions can help us in breaking a large, hard to manage problem into

smaller manageable sub-problems.

 Reduced Program Size: Functions can reduce the size of the program by removing data

redundancy.

 Easy Debugging: Using functions, debugging of a program becomes very easy, as it is

easier to locate and rectify the bug in the program if functions are used.

 Easy Updating: If we need to update some code in the program, then it is much more

easier in case we have used functions, as the changes need to be made in one place only

(in function).

Unit 1 Functions

2
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

C++ functions are classified in two categories. They are

 Library functions and

 User-defined functions.

The library functions can be used in any program by including respective header files.

The header files must be included using #include pre-processor directive. For example, a

mathematical function uses math.h header file. The programmer can also define and use his/her

own functions for performing some specific tasks. Such functions are called user-defined

functions.

Parts of A Function: Parts of a function are as follows.

1. Function prototype declaration

2. Function call

3. Definition of a function

4. Actual and formal arguments

5. Return statement

Unit 1 Functions

3
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

1. Function prototype Declaration: A function prototype declaration consists of

function’s return type, name, and arguments list. The statements given below are the

examples of function prototypes.

 void show (void);

float sum (float, int);

float sum (float x, int y);

2. Function Call: A function must be called by its name followed by argument, or without

argument, list enclosed in parenthesis and terminated by semicolon.

Syntax of function call is as follows:

function-name(with/without argument list);

In the above statement, function-name is the name of the function, arguments are within

the bracket and arguments are separated by comma. If arguments are absent one can write

void within the bracket.

3. Function Definition: The first line is called function definition and function body

follows it. The function definition and function prototype should match with each other.

The function body is enclosed within curly braces. The function can be defined

anywhere. If the function is defined before its caller, then its prototype declaration is

optional.

Syntax of function call is as follows:

 return_data_type function-name(argument/parameter list);
 {
 variable declarations
 function statements
 }

4. Actual and Formal Argument: The arguments declared in caller function and given in

the function call are called actual arguments. The arguments declared in the function

definition are known as formal arguments.

Unit 1 Functions

4
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

5. The return Statement: The return statement is used to return value to the caller

function. The return statement returns only one value at a time. When a return statement

is encountered, complier transfers the control of the program to caller function. The

syntax of return statement is as follows:

 return (variable name); or

 return variable name;

Passing Arguments:

The main objective of passing argument to function is message passing. The message passing

is also known as communication between two functions, that is between caller and called

functions. There are three methods:

1. Call by value (pass by value)

2. Call by address (pass by address)

3. Call by reference (pass by reference)

Call by Value: In this type, values of actual arguments are passed to the formal arguments and

operation is done on the formal arguments. Any change in the formal arguments does not effect

to the actual arguments because formal arguments are photocopy of actual arguments. Changes

made in the formal arguments are local to the block of called function. Once control returns back

to the calling function, the changes made will vanish.

The following example illustrates the use of call by value.

#include<iostream>
using namespace std;
void swap (int, int);

int main()
{

int x,y;
cout<<“\n Enter Values of X & Y:”;
cin>>x>>y;
cout<<“\n\n In function main() before swap()”;
cout<<“\n Values X=”<<x <<“ and Y= ”<<y;

Unit 1 Functions

5
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

swap(x,y);
cout<<“\n\n In function main() after swap() ”;
cout<<“\n Values X=”<<x <<“ and Y= ”<<y;
return 0;

}
void swap(int a, int b)
{

int k;
k=a;
 a=b;
b=k;
cout<<“\n In function swap() ”;
cout<<“\n Values X=”<<a <<“ and Y= ”<<b;

}

Output:

Enter Values of X & Y :5 4
In function main() before swap() Values X=5 and Y= 4
In function swap() Values X=4 and Y= 5
In function main() after swap() Values X=5 and Y= 4

Call by Address: In this type, instead of passing values, addresses of actual parameters are

passed to the function by using pointers. Function operates on addresses rather than values. Here

the formal arguments are pointers to the actual arguments. Because of this, when the values of

formal arguments are changed, the values of actual parameters also change. Hence changes made

in the argument are permanent. The following example illustrates passing the arguments to the

function using call by address method.

 #include<iostream>
using namespace std;
void swap (int *, int *);
int main()
{

int x,y;
cout<<“\n Enter Values of X & Y:”;
cin>>x>>y;
swap(&x,&y);

Unit 1 Functions

6
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<“\n In main() Values X=”<<x <<“ and Y=”<<y;
return 0;

}
void swap(int *a, int *b)
{

int *k;
*k=*a;
*a=*b;
*b=*k;
cout<<“\n In swap() Values X=”<<*a <<“ and Y=”<<*b;

}

OUTPUT

Enter Values of X & Y :5 4
In swap()Values X=4 and Y=5
In main()Values X=4 and Y=5

Call by Reference: C passes arguments by value and address. In C++ it is possible to pass

arguments by reference. C++ reference types, declared with ‘&’ operator, they declare aliases

for objects variables and allow the programmer to pass arguments by reference to functions. The

reference decelerator (&) can be used to declare references outside functions.

 For Ex.

int k = 0;

int &kk = k; // kk is an alias for k

kk = 2; // same effect as k = 2

Example:

 #include<iostream>
using namespace std;
void swap (int &, int &);

int main()

 {
int x,y;

Unit 1 Functions

7
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

cout<<“\n Enter Values of X & Y:”;
cin>>x>>y;
swap(x,y);
cout<<“\n In main()Values X=”<<x <<“ and Y=”<<y;
return 0;

}
void swap(int &a, int &b)
{

int k;
k=a;
a=b;
b=k;
cout<<“\n In swap()Values X=”<<a <<“ and Y=”<<b;

}

Output:

Enter Values of X & Y :5 4
In swap()Values X=4 and Y=5
In main()Values X=4 and Y=5

 Default Arguments: A default argument is a value provided in function declaration that is

automatically assigned by the compiler if the caller of the function does not provide a value for

the argument.

 Ex:

#include <iostream>
using namespace std;
int sum(int a, int b=10, int c=20, int d=30)
{
 return a+b+c+d;
}
int main() {
 int a=2,b=3,c=4,d=5;
 cout<<"Sum:"<<sum(a,b,c,d)<<endl;
 cout<<"Sum:"<<sum(a,b,c)<<endl;
 cout<<"Sum:"<<sum(a,b)<<endl;
 cout<<"Sum:"<<sum(a)<<endl;
 return 0;
}

Unit 1 Functions

8
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Output:
Sum:14
Sum:39
Sum:55
Sum:62

Const Arguments: The constant variable can be declared using const keyword. The const

keyword makes variable value stable.

Ex. The following program generates an error

#include <iostream>
using namespace std;
int increment(const int a);
int main() {
 int a=2;
 cout<<"Incremented val:"<<increment(a);
 return 0;
}
int increment(const int a)
{
 return ++a;

}

Output:

error: increment of read-only parameter 'a'

Inline Functions: When a function is declared as inline, the compiler copies the code of the
function in the calling function. i.e., function body is inserted in place of function call during
compilation.

Syntax:

 inline function_name(with or without arguments)

 {
 statement 1;
 statement 2;
 }

Unit 1 Functions

9
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Following are few situations where inline functions may not work:

1. The function should not be recursive.
2. Function should not contain static variables.
3. Function containing control structure statements such as switch, if, for loop, etc.
4. The function main() cannot be used as inline.

 The inline functions are similar to macros of C. The main limitation of macros is that they
are not functions, and errors are not checked at the time of compilation. The function offers
better type testing and does not contain limitations as present in macros. Consider the
following example:

 #include <iostream>
using namespace std;
inline int Max(int x, int y)
{
 return (x > y)? x : y;
}
int main()
{
 cout << "Max (20,10): " << Max(20,10) << endl;
 cout << "Max (0,200): " << Max(0,200) << endl;
 cout << "Max (100,1010):"<<Max(100,1010)<<endl;
 return 0;
}
Output:

 Max (20,10): 20
Max (0,200): 200
Max (100,1010):1010

 Function Overloading

It is possible in C++ to use the same function name for number of times and for different
intentions. Defining multiple functions with same name is known as function overloading or
function polymorphism. Polymorphism means one function having many forms. The overloaded
function must be different in their argument list and with different data types. The following are
examples of overloaded functions. All the functions defined should be equivalent to their
prototypes.

 int test() { }
int test(int a){ }
int test(double a){ }
int test(int a, double b){ }

Unit 1 Functions

10
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

 Example:

#include <iostream>
using namespace std;

void test(int);
void test(float);
void test(int, float);

int main() {
 int a = 5;
 float b = 5.5;

 test(a);
 test(b);
 test(a, b);

 return 0;
}

void test(int var) {
 cout<<"Integer number: "<<var<<endl;
}
void test(float var){
 cout<<"Float number: "<<var<<endl;
}
void test(int var1, float var2) {
 cout<<"Integer number: "<<var1;
 cout<<" and float number:"<<var2;
}

 Output:
Integer number: 5
Float number: 5.5
Integer number: 5 and float number:5.5

Principles of Function Overloading:

1. If two functions have the similar type and number of arguments (data type), the
function cannot be overloaded. The return type may be similar or void, but argument
data type or number of arguments must be different. For example,

a) sum(int,int,int);

Unit 1 Functions

11
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

sum(int,int);

Here, the above function can be overloaded. Though the data type of arguments in
both the functions are similar, number of arguments are different.

b) sum(int,int,int);

sum(float,float,float);

In the above example, number of arguments in both the functions are same, but
data types are different. Hence, the above function can be overloaded.

2. Passing constant values directly instead of variables also results in ambiguity.
3. The compiler attempts to find an accurate function definition that matches in types

and number of arguments and invokes that function. The arguments passed are
checked with all declared function. If matching function is found then that function
gets executed.

4. If there are no accurate match found, compiler makes the implicit conversion of
actual argument. For example, char is converted to int and float is converted to
double.

5. If internal conversion fails, user-defined conversion is carried out with implicit
conversion and integral promotion.

Precautions with Function Overloading

1. Only those functions that basically do the same task, on different sets of data, should
be overloaded. The overloading of function with identical name but for different
purposes should be avoided.

2. In function overloading, more than one function has to be actually defined and each
of these occupy memory.

3. Instead of function overloading, using default arguments may make more sense and
fewer overheads.

4. Declare function prototypes before main() and pass variables instead of passing
constant directly. This will avoid ambiguity that frequently occurs while overloading
functions.

Unit 1 Functions

12
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

Recursion:

In many programming languages including C++, it is possible to call a function from a
same function. This function is known as recursive function and this programming technique
is known as recursion.

In recursion a function calls itself and the control goes to the same function and it
executes repeatedly until some condition is satisfied. In this type of recursive calls a function
starts with a new value every time.

Rules for Recursive Function

1. In recursion, it is essential to call a function by itself; otherwise recursion would not take
place.

2. Only the user-defined function can be involved in the recursion. Library function cannot
involve in recursion because their source code cannot be viewed.

3. A recursive function can be invoked by itself or by other function. It saves return address
with the intention to return at proper location when return to a calling statement is made.
The last-in-first-out nature of recursion indicates that stack data structure can be used to
implement it.

4. To stop the recursive function, it is necessary to base the recursion on test condition, and
proper terminating statement such as exit() or return() must be written using the if()
statement.

Example:

#include<iostream>
using namespace std;

int main()
{

unsigned long int fact(int);
dint f,x;
cout<<“\nEnter a Number:”;
cin>>x;
f=fact(x);
cout<<“\nFactorial of ” <<x <<“ is ”<<f;
return 0;

}
unsigned long int fact(int a)
{

unsigned long factorial;
if(a==1)

Unit 1 Functions

13
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

return 1;
else

factorial=a*fact(a-1);
return factorial;

}

Output:

Enter a Number:6
Factorial of 6 is 720

Library Functions:

ceil, ceill and floor, floorl: The functions ceil and ceill round up the given float number,

whereas the functions floor and floorl round down the float number. They are defined in math.h

header file. Their declarations are as given below.

double ceil(double n);
double floor(double n);
dlng double ceill(long double (n));
long double floorl(long double (n));

 modf and modfI: The function modf breaks double into integer and fraction elements, and

the function modfl breaks long double into integer and fraction elements. These functions

return the fractional elements of a given number. They are declared as given below.

 double modf(double n, double *ip);
long double modfl(long double (n), long double *(ip));

Ex.

int main()
{

double f, i;
double num = 211.57;
f = modf(num, &i);
cout<<“\n The Complete Number:

”<<num;
cout<<“\n The Integer elements: ”<<i;
cout<<“\n Fractional Elements: ”<<f;
return 0;

}

Output:

The Complete Number :
211.57

The Integer elements : 211

Fractional Elements : 0.57

Unit 1 Functions

14
Suresh Yadlapati, M. Tech, (Ph. D), Dept. of IT, PVPSIT.

abs, fabs, and labs: The function abs() returns the absolute value of an integer. The fabs()

returns the absolute value of a floating-point number, and labs() returns the absolute value of

a long number.

int abs(int n);
double fabs(double n);
long int labs(long int n);

